Ultranarrow band absorbers based on surface lattice resonances in nanostructured metal surfaces.
نویسندگان
چکیده
Nanostructured metals have received a significant amount of attention in recent years due to their exciting plasmonic and photonic properties enabling strong field localization, light concentration, and strong absorption and scattering at their resonance frequencies. Resonant plasmonic and metamaterial absorbers are of particular interest for applications in a wide variety of technologies including photothermal therapy, thermophotovoltaics, heat-assisted magnetic recording, hot-electron collection, and biosensing. However, it is rather challenging to realize ultranarrow absorption bands using plasmonic materials due to large optical losses in metals that decrease the quality factor of optical resonators. Here, we theoretically and experimentally demonstrate an ultranarrow band absorber based on the surface lattice resonances (SLRs) in periodic nanowire and nanoring arrays on optically thick, reflecting metallic films. In experiments, we observed ultranarrow band resonant absorption peaks with a bandwidth of 12 nm and absorption amplitude exceeding 90% at visible frequencies. We demonstrate that the resonance absorption wavelength, amplitude of the absorption peak, and the bandwidth can be controlled by tuning the periodicity and the thickness of nanoring and nanowire arrays. Unlike conventional plasmonic absorbers utilizing common metal–insulator–metal stacks, our narrow band absorber consists solely of metals, facilitating stronger optical interaction between the SLR of periodic nanostructures and the highly reflective film. Moreover, by introducing asymmetry to the nanoring/nanowire hybrid system, we observe the spectral evolution of resonance splitting enabled by strong coupling between two individual SLRs arising from nanoring and nanowire arrays. Designing such all-metallic nanostructure arrays is a promising route for achieving ultranarrow band absorbers which can be used as absorption filters, narrow band thermal emitters in thermophotovoltaics, and plasmonic biosensors.
منابع مشابه
Dual-band, Dynamically Tunable Plasmonic Metamaterial Absorbers Based on Graphene for Terahertz Frequencies
In this paper, a compact plasmonic metamaterial absorber for terahertz frequencies is proposed and simulated. The absorber is based on metamaterial graphene structures, and benefits from dynamically controllable properties of graphene. Through patterning graphene layers, plasmonic resonances are tailored to provide a dual band as well as an improved bandwidth absorption. Unit cell of the design...
متن کاملLarge-Area, Lithography-Free Super Absorbers and Color Filters at Visible Frequencies Using Ultrathin Metallic Films
Nanostructured photonic materials enable control and manipulation of light at subwavelength scales and exhibit unique optical functionalities. In particular, plasmonic materials and metamaterials have been widely utilized to achieve spectral transmission, reflection, and absorption filters based on localized or delocalized resonances arising from the interaction of photons with nanostructured m...
متن کاملNear-ideal optical metamaterial absorbers with super-octave bandwidth.
Nanostructured optical coatings with tailored spectral absorption properties are of interest for a wide range of applications such as spectroscopy, emissivity control, and solar energy harvesting. Optical metamaterial absorbers have been demonstrated with a variety of customized single band, multiple band, polarization, and angular configurations. However, metamaterials that provide near unity ...
متن کاملLocalized surface-plasmon polaritons in disordered nanostructured metal surfaces: Shape versus Anderson-localized resonances
The electromagnetic wave scattering from disordered nanostructured metal surfaces supporting surfaceplasmon polaritons ~SPP! is studied by means of fully retarded scattering formulations. We investigate the two physical mechanisms which may underlie the excitation of localized SPP: Anderson localization and shape resonances. The former mechanism is discarded since plane-wave excited, localized ...
متن کاملFar-infrared absorber based on standing-wave resonances in metal-dielectric-metal cavity.
Thin-film resonant absorbers for the far-IR spectral range were fabricated, characterized, and modeled. The 3-μm-thick structure comprises a periodic surface array of metal squares, a dielectric spacer and a metallic ground plane. Up to 95% absorption for the fundamental band at ~53.5μm wavelength (5.6 THz) is achieved experimentally. Absorption bands are independent of the structure period and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- ACS nano
دوره 8 8 شماره
صفحات -
تاریخ انتشار 2014